Shared Vision Planning
Stakeholder Involvement in the Technical Analysis

Hal Cardwell, Ph.D.
Institute for Water Resources, USACE
www.SharedVisionPlanning.us
Context of Corps and Shared Vision Planning

- IWR is a policy & planning think-tank for Corps developed in the early 1970s
- IWR has been a proponent of Shared Vision Planning since National Drought Study in early 1990s
- Corps is mounting a major effort to support collaborative planning, with IWR playing an important supporting role
- Multiple federal agencies jointly looking at the stakeholder involvement in the technical analysis
Why the Water Plan is pursuing Shared Vision Planning:

- Better integration and consistency with other planning activities
- Obtain consensus on quantitative deliverables
- Build common conceptual understanding of water management system
- Improve transparency of Water Plan information
Water management is characterized by...

- Persistent conflict
- Complexity & uncertainty in natural systems (hydrology, ecology etc.)
- Conflicting interests & values
- Interest groups and the public demanding involvement
To survive in this environment we need to

Technical tools
- Understand basic hydrology, ecology, economics, etc
- Accurately represent the linkages between these areas

Process skills
- Understand institutional setting
- Develop ways engage Stakeholders
- Build trust

Collaboration in the Technical Analysis
integrates tried-and-true planning principles, systems modeling and collaboration into a practical forum for making resource management decisions;

SVP means involving stakeholders in the technical analysis – in the data and technical relationships
“the process of building a model is a way of working out a shared view of what is being managed and how the managing should be done.” K. Lee

• SVP builds **understanding** of the system –
 – By participating in developing the model, there is **joint learning**
 – Shared knowledge will **minimize disputes over “facts”**, leaving disputes over values and interests still on the table

• SVP builds **confidence** in the analysis
 – People more willing to **trust the outputs of a model** if they trust the way the model was developed

• SVP builds **trust** between stakeholders
What we want from technical analysis within SVP

- **Integrated** – All stakeholder interests and their interactions are in one place
- **User Friendly** – capable of being used by multiple stakeholders and decision makers
- **Understandable/Transparent** – assumptions, input, relationships, & output
- **Relevant** to the interests and values of stakeholder and decision makers
- **Adaptable/Flexible** to changing conditions or evolving process
Tier I: Conceptual Framework

Tier II: Integrated Planning / Screening / Negotiating Model

Tier III: Detailed Data Sets and Numerical Models
- Quality
- Hydrology
- Ecologic
- Economic
What is different?

• The use of a model sets SVP apart from other “collaborative” planning processes.
• The participation of stakeholders in developing and validating the modeling sets SVP apart from traditional technical analysis.
Stakeholder Involvement in the Technical Analysis is not just Theory

- **Drought Exercises for the Potomac River** (DC) - Interstate Commission for the Potomac River;
- **Drought Preparedness** - El Dorado Irrigation District (CA)
- **404 Water Supply Permitting on Cache la Poudre** (CO) - with cities of Greeley & Fort Collins & WSWC
- **Urban Water Management for Los Angeles** – CDM
- **Middle Rio Grande River** (NM) water allocation and ESA issues – Sandia National Labs;
- **Roanoke River** (VA/NC)– Hydrologics, Inc., TNC;
- **Other SVP Cases** - Five Pilots in the National Drought study, ACT-ACF, Rappahannock (Va), Mississippi Headwaters, Willamette TMDLs (OR), Cache la Poudre (CO),
- USGS, EPA, BuRec, all have related initiatives
A Quick Example - Lake Ontario Regulation Study

• Five year, $25 Million study on re-regulation of Lake Ontario-St. Lawrence River

• Co-sponsored by the US and Canada through the International Joint Commission

• Collaboratively-built models help interest groups identify and begin to quantify the relationships between hydrology and their interests.
Structured Stakeholder-involvement in Model building

Circle A
- Modelers from Corps + Envi Canada + contractors
- email, weekly teleconferences

Circle B
- Working groups on Navigation, Hydropower, M&I water supply, Environment, recreational boating, coastal (lake) erosion
- Working groups developed technical information and passed it to the Circle A team

Circle C –
- The most interested members of the public
- Technical experts in subsidiary studies
- Road Show presentations at stakeholder gatherings

Circle D
- Practice Decision-Making workshop with US-Canada Study Board
Evaluation using dynamic Excel spreadsheet in workshop settings

Graphic displays like this one on meadow marsh can relate alternatives to “thing people care about”; able to switch alternatives to play “what if” games
Evaluation using dynamic Excel spreadsheet in workshop settings

Different graphics can display more of the available data in ways that people relate to – and again allow what-if games.
Evaluation using dynamic Excel spreadsheet in workshop settings

Table displays resonate with some – color coding can help focus information.

<table>
<thead>
<tr>
<th>Environmental Performance Indicators</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Meadow Marsh Community</td>
<td>1.02</td>
<td>1.04</td>
<td>1.17</td>
<td>1.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Veg 10C - spawning habitat supply</td>
<td>0.89</td>
<td>0.95</td>
<td>0.94</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Veg 24C - spawning habitat supply</td>
<td>1.09</td>
<td>1.69</td>
<td>1.91</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Veg 24C - spawning habitat supply</td>
<td>1.09</td>
<td>1.62</td>
<td>1.93</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Pike - YOY recruitment</td>
<td>1.02</td>
<td>1.69</td>
<td>1.95</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longnose Bass - YOY recruitment</td>
<td>0.94</td>
<td>1.58</td>
<td>1.97</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least Bittern (IXX) - reproductive index</td>
<td>0.66</td>
<td>1.64</td>
<td>0.94</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Rail (GALI) - reproductive index</td>
<td>0.96</td>
<td>1.11</td>
<td>0.99</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Tern (CHRT) - reproductive index</td>
<td>1.54</td>
<td>1.37</td>
<td>1.90</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Rail (COYO) - preferred breeding habitat</td>
<td>1.56</td>
<td>1.61</td>
<td>0.98</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King Rail (LARI) - preferred breeding habitat</td>
<td>1.08</td>
<td>1.59</td>
<td>1.98</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Veg 10C - spawning habitat supply</td>
<td>1.01</td>
<td>1.61</td>
<td>1.91</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Veg 24C - spawning habitat supply</td>
<td>1.01</td>
<td>1.61</td>
<td>1.91</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longnose Bass - YOY recruitment</td>
<td>1.05</td>
<td>1.61</td>
<td>1.91</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Pike - YOY recruitment</td>
<td>1.05</td>
<td>1.61</td>
<td>1.91</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Rail (GALI) - reproductive index</td>
<td>0.89</td>
<td>1.60</td>
<td>1.90</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Pike - YOY net productivity</td>
<td>0.02</td>
<td>2.68</td>
<td>1.17</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Rail (GALI) - reproductive index</td>
<td>1.16</td>
<td>1.27</td>
<td>1.31</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muskellunge (CHRT) - beauge deposits in drained river mouth</td>
<td>1.42</td>
<td>4.23</td>
<td>1.75</td>
<td>32.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden Shiner - suitable feeding habitat area</td>
<td>1.09</td>
<td>1.60</td>
<td>1.99</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands fish - abundance index</td>
<td>0.97</td>
<td>9.80</td>
<td>0.54</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migratory wetland - habitat area</td>
<td>1.03</td>
<td>1.63</td>
<td>1.97</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least Bittern - reproductive index</td>
<td>1.03</td>
<td>1.63</td>
<td>1.97</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Rail (GALI) - reproductive index</td>
<td>0.94</td>
<td>1.67</td>
<td>1.96</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migratory wetland - productivity</td>
<td>1.06</td>
<td>1.60</td>
<td>1.99</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Green Heron (AMHR) - reproductive area</td>
<td>0.04</td>
<td>0.77</td>
<td>1.08</td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Pike (ESUI) - reproductive area</td>
<td>0.35</td>
<td>1.54</td>
<td>0.94</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bufflehead (BUFL) - reproductive index</td>
<td>0.87</td>
<td>0.87</td>
<td>1.01</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Snowy Egret (AMEE) - reproductive area</td>
<td>1.03</td>
<td>1.66</td>
<td>1.97</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bufflehead (BUFL) - reproductive index</td>
<td>0.90</td>
<td>0.99</td>
<td>1.30</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mallard (CODI) - surviving hens</td>
<td>1.08</td>
<td>3.67</td>
<td>0.82</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage "good" scores for each plan:

- 94%: 24%: 16%: 34%

Joe Derricks Pretty Good Overall Environmental Index: 1.05: 1.35: 1.10: 4.04
Evaluation using dynamic Excel spreadsheet in workshop settings

A radar or “bulls-eye” format can help display relative impacts of different alternatives. Again, color-coding and what-if games may help people learn about options.
So, how can we adapt SVP process to support Water Planning in Calif?

• Observations
 – SVP has always been applied to specific place-based decisions
 – Decentralized decision-making on technically intricate issues over a vast spatial scale
 – Many well-informed, politically-savvy stakeholders with diverse views
 – Integration with Flood-safe & IRWM
General ideas

• Focus on the “why” & “what” – objectives and vision of stakeholder involvement in technical analysis
• Identify and setup the appropriate mechanisms for including stakeholders in the technical analysis
 – Technical staff
 – Policy makers
• Identify critical points in model development at which stakeholders want to be involved
• Use a variety of models – simple to complex
• Treat initial efforts at both process and modeling as “experiments” requiring subsequent refinement
• Exercise & update both the technical analysis and the collaborative process - assume iterative development.
Initial proposal

- Initial Activities
 - Share experiences, solicit ideas (April Workshop for technical people)
 - Vetting through climate and scenario activities
 - Vetting at June 2, 3 All-Regions forum in San Jose

- Expected Results
 - Vision for how to apply SVP in the long term (2013, 2018) that can form the basis of the Data & Tools chapter in Policy section of 2009 Update
 - Baby steps to test ideas through climate & scenarios work
 - Awareness building & endorsement

- Risks
 - Creating unrealistic expectations – collaboration will be a long process full of bumps technically and process-wise
Wrap Up – *Shared Vision Planning*

- Connecting collaboration & modeling is **proliferating** – with top-level Corps backing & a federal initiative
- Shared Vision Planning **integrates** tried-and-true **planning principles**, **systems modeling** and collaboration
- Openness in the process and the modeling foments trust in both

- Application to Ca Water Plan will be challenging, but basic ideas still apply
- Start with
 - collaboratively developing a vision of integrating stakeholders into the process, and
 - small steps technically
About Shared Vision Planning

Shared Vision Planning (SVP) is a collaborative approach to formulating water management solutions that combines three disparate practices: 1) traditional water resources planning, 2) structured public participation and 3) collaborative computer modeling. Although each of these elements has been successfully applied separately, Shared Vision Planning unifies them in a framework that integrates planning, structured public participation and collaborative computer modeling.

Goal

The goal of Shared Vision Planning is to improve the economic, environmental and social outcomes of water management decisions. Shared Vision Planning facilitates a common understanding of a natural resource system and provides a consensus-based forum for stakeholders to identify tradeoffs and new management options. Shared Vision Planning creates user-friendly and understandable computer models that are relevant to stakeholder interests and adaptable to changing conditions.

What’s in this Web Site

For More Information
www.SharedVisionPlanning.us