Water Plan Activities

2. 137 Comment letters/emails received thru June

3. 6 Steering Committee meetings

4. March Workshop – Ag Land Stewardship RMS

5. June Graphics Workshop – Water Portfolios & Future Scenarios

6. July Climate Change TAG meeting

7. 12 Regional Workshops April – May to get comments on Public Review Draft

8. 7 Regional Tribal Plenary Meetings March – June to prep for Tribal Water Summit

9. 7 Tribal Summit Planning Team meetings January – July

10. September SWAN Meeting – review analytical studies on responses to future uncertainties
1. Multi-State Agency Team released Draft 20x2020 Plan & workshop

2. SWRCB adopts Recycling Water Policy

3. DWR completed IRWM Regional Acceptance Process for 2009

4. DWR convening CVFPP Regional & Topic Work Groups

5. CNRA released Draft CA Climate Adaptation Strategy

6. Model Water Efficiency Landscape Ordinance approved + workshops

7. 11 Presentations on Update 2009
California Water Plan Update 2009
Process Guide

Public
- Advisory Committee
 - Communities of Interest
 - Statewide Organizations

Govt-to-Govt Collaboration
- Water Plan Steering Committee
 - State Agencies
- Coordination
 - Federal Agencies
- Consultation
 - Tribal Governments

< Plenary >
Everyone

DWR & Other State Agencies
- Multi-Disciplinary Project Team
 - Work Teams
 - Analytical Tools & Data
 - Communications Planning
 - Environmental Water Facilitation
 - Integrated Flood Management
 - Land & Water Use Resource Management
 - Strategies
 - Water Supply & Balance
 - Water Quality
 - Regional Leads
 - State staff working with Regional Efforts
 - Regional Reports

Regional Forum & Workshops
- Communities of Place
- Local Agencies & Governments

Extended Review Forum
- Interested Public

Statewide Water Analysis Network (SWAN)
- Scientists & Engineers
- Information Exchange & Data Integration
- Climate Change
- Shared Analytical Tools & Methods
30-Month Collaboration Statistics
March 2007 – September 2009

<table>
<thead>
<tr>
<th>Meeting</th>
<th>Number</th>
<th>Person Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering Committee</td>
<td>15</td>
<td>1308</td>
</tr>
<tr>
<td>Advisory Committee</td>
<td>9</td>
<td>4987</td>
</tr>
<tr>
<td>Regional Workshops</td>
<td>33</td>
<td>6468</td>
</tr>
<tr>
<td>Mgmt Strategy Workshops</td>
<td>35</td>
<td>1694</td>
</tr>
<tr>
<td>All-Regions Forum</td>
<td>2</td>
<td>1928</td>
</tr>
<tr>
<td>Plenary</td>
<td>2</td>
<td>2586</td>
</tr>
<tr>
<td>SWAN Workshops</td>
<td>8</td>
<td>1840</td>
</tr>
<tr>
<td>Scenarios Workshops</td>
<td>3</td>
<td>182</td>
</tr>
<tr>
<td>Climate Change TAG</td>
<td>4</td>
<td>464</td>
</tr>
<tr>
<td>Tribal Communication Committee</td>
<td>12</td>
<td>770</td>
</tr>
<tr>
<td>Tribal Water Summit Planning</td>
<td>10</td>
<td>870</td>
</tr>
<tr>
<td>Tribal Water Plenary</td>
<td>8</td>
<td>1739</td>
</tr>
<tr>
<td>Totals</td>
<td>141</td>
<td>24,836</td>
</tr>
</tbody>
</table>

Comparison w/ Update 2005
106% of collaboration in 50% of the time

* Not including briefings
California Water Plan Update 2009 timeline, 2009 and 2010

We Are Here

* First major public agency roll-out of the Final Water Plan Update 2009
Ways to Access Water Plan Information

➢ Visit the Water Plan Web Portal

www.waterplan.water.ca.gov

➢ Subscribe to Water Plan eNews

a weekly electronic newsletter

www.waterplan.water.ca.gov/enews
PRD Comments
& Responses
Sources & Distribution of PRD Comments

<table>
<thead>
<tr>
<th>Source</th>
<th>General</th>
<th>Highlights</th>
<th>Vol. 1</th>
<th>Vol. 2</th>
<th>Vol. 3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>137 Letters & Emails</td>
<td>51</td>
<td>12</td>
<td>152</td>
<td>321</td>
<td>223</td>
<td>769</td>
</tr>
<tr>
<td>12 Regional Workshops</td>
<td>62</td>
<td>130</td>
<td>85</td>
<td>10</td>
<td>284</td>
<td>571</td>
</tr>
<tr>
<td>TOTAL</td>
<td>113</td>
<td>142</td>
<td>237</td>
<td>331</td>
<td>517</td>
<td>1340</td>
</tr>
</tbody>
</table>
Types of PRD Comments

<table>
<thead>
<tr>
<th>Type</th>
<th>General</th>
<th>Highlights</th>
<th>Vol. 1</th>
<th>Vol. 2</th>
<th>Vol. 3</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Policy</td>
<td>57</td>
<td>66</td>
<td>137</td>
<td>59</td>
<td>23</td>
<td>342</td>
</tr>
<tr>
<td>T Technical</td>
<td>10</td>
<td>34</td>
<td>69</td>
<td>180</td>
<td>317</td>
<td>610</td>
</tr>
<tr>
<td>G Graphics/Format</td>
<td>4</td>
<td>42</td>
<td>10</td>
<td>32</td>
<td>26</td>
<td>114</td>
</tr>
<tr>
<td>O Other</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>33</td>
<td>32</td>
<td>74</td>
</tr>
<tr>
<td>Pending</td>
<td>40</td>
<td>0</td>
<td>14</td>
<td>27</td>
<td>119</td>
<td>200</td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td>143</td>
<td>237</td>
<td>331</td>
<td>517</td>
<td>1340</td>
</tr>
<tr>
<td>Type</td>
<td>General</td>
<td>Highlights</td>
<td>Vol. 1</td>
<td>Vol. 2</td>
<td>Vol. 3</td>
<td>TOTAL</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1 Covered</td>
<td>16</td>
<td>50</td>
<td>67</td>
<td>43</td>
<td>39</td>
<td>215</td>
</tr>
<tr>
<td>2 Changes</td>
<td>23</td>
<td>44</td>
<td>89</td>
<td>191</td>
<td>170</td>
<td>517</td>
</tr>
<tr>
<td>3 No Change</td>
<td>3</td>
<td>14</td>
<td>7</td>
<td>35</td>
<td>42</td>
<td>101</td>
</tr>
<tr>
<td>4 Parking Lot</td>
<td>22</td>
<td>23</td>
<td>41</td>
<td>17</td>
<td>85</td>
<td>188</td>
</tr>
<tr>
<td>5 Not Related</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>18</td>
<td>28</td>
<td>74</td>
</tr>
<tr>
<td>Pending</td>
<td>40</td>
<td>2</td>
<td>23</td>
<td>27</td>
<td>153</td>
<td>245</td>
</tr>
<tr>
<td>TOTAL</td>
<td>112</td>
<td>143</td>
<td>237</td>
<td>331</td>
<td>517</td>
<td>1340</td>
</tr>
</tbody>
</table>
Changes to PRD of Highlights & Volumes
Changes to Highlights PRD

- Additional pages, new subsections & expanded information
 - Contents page for *Highlights*
 - At-a-glance guide to Water Plan vols.
 - Glossary of key water definitions
 - California’s Water Resources
 - Climate Change & Impacts
 - Water Scenarios 2050

- Completed Graphics
 - Statewide & regional water balances
 - Scenarios & water demand changes
 - Resource Management Strategies
 - Regional strategies & projects
Changes to Volume 1 PRD

- Progress since Update 2005
 - More detailed & moved to Reference Guide
 - Summarized in Chapter 1 Introduction
- Updated Ch3 Companion State Plans
 - 2009 California Climate Adaptation Strategies
 - Clarify State agencies’ water authority
- Statewide water balances and conditions
 - Moved to Chapter 4 California Water Today
 - Formerly Volume 3 Chapter 1
- Statewide scenarios
 - Moved to Ch 5 Managing an Uncertain Future
 - Formerly Volume 3 Chapter 1
- Chapter 7 Implementation Plan
 - Additional dates, data, and actions
 - Based on comments and updated reports
Changes to Volume 2 PRD

- Authors reviewed, updated & changed text and/or data based on comments received
- Updated RMS Summary Table - Ch 1
- Worked on photos and graphic design
- Legal review of select strategies
- Glossary work and checked consistency between strategies
- Refined benefits and definitions
- Added references
Changes to Volume 3 PRD

- Reviewed and made text changes based on comments received
- Filled in missing sections
- Added box on Regional Tribal Plenary Meetings
- Added regional water portfolios
- Added future scenarios and regional water demand changes
- Added maps, graphics, and a few photos
Questions?
Pre-Final Draft
Water Plan Highlights
Directory’s Message

It is my pleasure to introduce the 2009 California Water Plan Update (Update 2009), which sets forth a blueprint for sustainability and provides a new direction for water management in California. Our new reality is one in which we must manage our resources characterized by uncertainty and vulnerability due to climate change and changing ecosystems needs. Out past hydrology is no longer an accurate indicator of the future.

The Water Plan follows the Update 2009 roadmap of strategies for sustainable water use but with an increased sense of urgency. Update 2009 reinforces the need to follow the principles of integrated water management - statewide and regionally - and to use water efficiently, improve water quality and reliability, and integrate environmental stewardship into every aspect of how we manage our water.

The Resource Management Strategies in Update 2009 are a mix of old and new. Water conservation has long been a core strategy for water resource management. However, there is a new urgency with which we must embrace water use efficiency in the context of climate change and increased urban demand. Improved water conveyance is also a strategy from past Water Plans, but it is now presented with renewed significance given the contest of the Delta ecosystem in continued decline and the threats of sea level rise.

New to this Water Plan is an integration of water resource management and flood management throughout the state. This approach aims to increase resiliency in our systems while yielding multiple benefits like increased public safety, habitat protection, and water supply reliability. A critical strategy in Update 2009 is the development of a reliable revenue stream to fund necessary system improvements and to invest in the continued resilience and robustness of California’s water resources and the ecosystem that supports them.

Climate change and increasing demand have greatly reduced the flexibility and resilience of the last century’s infrastructure investments. Now is the time to recognize our changed conditions and reinvest in that infrastructure in a sustainable manner. In addition to statewide improvements, local resource strategies such as conservation, water recycling, groundwater storage and conjunctive use, urban runoff management and more can converge in the context of Integrated Regional Water Management (IRWM) planning.

The strategies outlined in these pages provide the means to manage resources comprehensively, from snowmelt to century, from field to tap, and all of the uses within the watershed.

California water management cannot be changed overnight, but Update 2009 and the momentum behind it provide the plan, tools and strategies to achieve momentum change beginning now. I hope you will agree that Update 2009 is the state’s blueprint for sustainability and integrated water management and marks a significant new chapter in the way California manages its water resources.

Lester A. Snow
Director
California Water Today: Imperative to Act

California is facing one of the most significant water crises in its history—one that is lasting hard because it has many aspects and consequences. Reduced water supplies and a growing population are worsening the effects of a multi-year drought. Climate change is reducing our reservoir storage and increasing floods. Court decisions and new regulations have reduced Delta water deliveries by 30 percent. Key fish species continue to decline. In some areas of the state, our ecosystems and quality of underground and surface waters are unhealthy. The current global financial crisis will make even more difficult to fund solutions. We must act now to provide integrated, reliable, sustainable, and secure water resources and management systems for our health, economy, and ecosystems.

Greater Drought Impacts

Today we feel the effects of a major drought. Water Year 2009 was the third consecutive dry year for the state. Because of losses caused by this drought, the U.S. Department of Agriculture in September designated all of the counties within the San Joaquin River, Tulare Lake, and Central Coast Hydrologic Regions as either Primary Natural Disaster Areas or Natural Disaster Areas (statewide total was 21 counties and 29 counties, respectively). Consequently, the state will enter the 2009–2010 Water Year with its key supply reservoirs at only 58 percent of average (see figure). Despite a developing El Niño over the Pacific Ocean, we cannot assume that statewide water supply will improve in 2010.

Increasing Flood Risk

Every region of California faces flood risks. Nearly 2 million people in California live within areas that can expect flooding on average once in 100 years. This means that, on average, approximately 20,000 people per year can be affected by floods. More people are moving into these floodplains and flood-prone areas every day. Sacramento, California’s capital, has one of the lowest levels of flood protection of any major city in the nation. Hurricane Katrina provided a vivid reminder of levee vulnerability and consequences of flooding urban areas. Before Katrina, New Orleans levees were rated as having a 200-year level of flood protection. Sacramento’s levees are rated about one half that amount. The threat of catastrophic flooding, especially in the deep floodplains of the Central Valley and Delta, is a continuing fear.

Declining Ecosystems

The ecosystems in many areas of the state have declined; many species have been listed as threatened or endangered. Problems with waterfowl, much of the state’s habitat, competition with invasive species, salinity, and water operations contribute to the decline. One of the most obvious examples of an ecosystem on the verge of collapse is the Sacramento-San Joaquin Delta. Salmon, delta smelt, and other species are at their lowest levels since their records have been kept, about 80 years. This decline has led to court restrictions and new regulations on Delta diversions.

Impaired Water Bodies

The quality of groundwater and surface water systems are significantly throughout the state. We need improvements in drinking water treatment, cleanup of polluted groundwater, salt management, and urban runoff management. A high priority is creating healthy watersheds to keep source water free of pollutants like pathogens, chemicals, and disinfectant byproducts that are regulated or will be regulated in the near future. Recently, some unregulated chemicals and pollutants are emerging as actual or potential contaminants. They can be in pharmaceuticals and personal care products, byproducts of fires and fire suppression, or decayed elements of nanotechnology.

Aging Infrastructure

Conditions today are much different than when most of California’s water systems were constructed, and upgrades have not kept pace with changing conditions, especially considering the growing population and the future challenges accompanying climate change (see pages 8 through 11). California’s flood protection system, composed of aging infrastructure with major design deficiencies, has been further weakened by lack of maintenance. State and regional budget shortfalls and a tightened credit market may delay new projects and programs.

The entire system—water and flood management, water supplies, and ecosystems—has lost its resilience and is changing in unceivable ways.

Find discussions of California’s water challenges in Volume 1, Chapter 4 California Water Today: and regional issues in Volume 3.
End of Year Reservoir Storage

- 2006: 123%
- 2007: 78%
- 2008: 57%
- 2009 Projected: 68%
California’s Water Resources: Variable and Extreme

California is often recognized as a land of extremes—its diversity in cultures, ecosystems, geography, and water resources. However, “variable” would be a more accurate term to describe its water resources. Precipitation, which is the root of California’s water supplies, varies from place to place, season to season, and year to year. Most of the state’s snow and rain fall in the mountains in the north and eastern parts of the state, and most water is used in the valleys and coastal plains. In addition, the state’s ecosystem, agricultural, and urban water users have variable needs for the quantity, quality, timing, and place of use. The water and flood systems face both the threat of too little water to meet needs during droughts and too much water during floods.

Update 2005 began the process of developing water balances to show water used and sources of water for individual years. With Update 2009, statewide balances are available for eight water years, 1998 through 2005 (shown on the previous page). The eight-year sequence did not include any major floods and did not encompass the possible range of far wetter and far drier years in the record. The figure demonstrates the state’s variability for water use and water supply. “Water use” shows how applied water was used by urban and agricultural sectors and dedicated to the environment; and “water supply” shows where the water came from each year to meet those uses. In addition to what is shown, about 120 million acre-feet of precipitation and inflow as an average year either evaporates, is used by native vegetation, provides rainfall for agriculture and managed wetlands, or flows out of the state or to salt tanks like saline aquifers. (See next page for 2005 regional water balances and information about groundwater overdraft.)

Key Water Supply and Water Use Definitions

Applied water. The total amount of water that is diverted from any source to meet the demands of water users without adjusting for water that is used up, returned to the developed supply or recoverable (see water balance figure).

Instream flow. The use of water within its natural watercourse as specified in an agreement, water rights permit, court order, FERC license, etc.

Recycled water. Municipal water which, as a result of treatment of waste, is suitable for a direct beneficial use or a controlled use that would not otherwise occur and is therefore considered a valuable resource.

Reused water. The application of previously used water to meet a beneficial use, whether treated or not prior to the subsequent use.

Urban water use. The use of water for urban purposes, including residential, commercial, industrial, recreation, energy production, military, and institutional classes. The term is applied in the sense that it is a kind of use rather than a place of use.

Water balance. An analysis of the total developed/dedicated supplies, uses, and operational characteristics for a region. It shows what water was applied to actual uses so that use equals supply.
California Water Balance by Year

Water Use
- Required Delta Outflow
- Instream Flow
- Managed Wetlands
- Irrigated Agriculture
- Urban
- Wild & Scenic Rivers

Water Supply
- Projects
- Colorado
- Federal
- Local
- State
- Groundwater
- Reuse
- Recycled
- Instream Environmental

Change in storage – MAF (Total of surface & groundwater storage)
- 2005: 127%
- 2004: 94%
- 2003: 93%
- 2002: 81%
- 2001: 72%
- 2000: 66%
- 1999: 92%
- 1998: 171%

Million Acre-feet
- 0
- 20
- 40
- 60
- 80
- 100

% of Average Rainfall
- 0
- 20
- 40
- 60
- 80
- 100

Million Acre-feet
California’s Water Resources: Variable and Extreme (2)

California’s Water Resources: Variable and Extreme

Water Balance by Region for Water Year 2005

California has a variety of climates and topographies. The amount and variability of precipitation can change dramatically between the northern regions of California and its southern portions, such that statewide average information does not truly depict regional conditions. It is common for the winter precipitation to be wet or above average in the northern portions of the state, while below normal to dry in the south and southeastern portions for the same water year.

Agricultural, urban, and environmental water use in a region all vary according to the wetness or dryness in a given year. In very wet water years with excessive precipitation, outdoor water demands are slightly lower due to the high amount of rainfall that directly meets the needs. During the very dry water years, demands for water are reduced as a result of urban and agricultural water conservation practices and because available surface water supplies are at least-normal levels for use.

To better understand California’s regional diversities and plan for future needs, the Department of Water Resources divides the state into 10 hydrologic regions. In addition to regional overviews—the Sacramento-San Joaquin River Delta region and the Mountain Counties area—there are areas of common interests.

In the California Water Plan, regional water portfolios provide information about annual water use and water supply balances for the 10 hydrologic regions and the Mountain Counties area for years 1998 through 2005. The figure on the facing page depicts balances for the hydrological regions for year 2005, considered a wet year. Water balances can be used to compare how water supplies and uses vary between wet, average, and dry hydrologic conditions through the regions and how each region’s water balance can vary from year to year.

Groundwater

Each year on average, about 2 million acre-feet more groundwater is used than what naturally recharges—called groundwater overdraft. Groundwater overdraft is characterized by groundwater levels that decline over a period of years and never fully recover, even in wet years. Overdraft can lead to increased extraction costs, land subsidence, water quality degradation, and environmental impacts.

Groundwater Overdraft

The two hydrographs below show the response of groundwater levels to differing water management regimes. The first hydrograph shows groundwater levels declining in response to agricultural development in the San Joaquin Valley. Groundwater levels recover somewhat during the wet period of the early 1980s, but continue to decline through the 1990s and 2000s. The second hydrograph shows a similar groundwater level decline in response to development in southern Yuba County. However, groundwater levels begin to recover in the early 1980s when surface water imports from Yuba County Water Agency began. The hydrograph shows a decline in groundwater levels during the early 1990s due to surface water imports that were curtailed and groundwater was more heavily relied upon. Continued conjunctive water management actions resulted in the refill of the South Yuba Groundwater Subbasin, which continues up to present.
Water Balance by Region for WY 2005

Water Use
- Required Delta Outflow
- Instream Flow
- Wild & Scenic Rivers
- Managed Wetlands
- Irrigated Agriculture
- Urban

Water Supply
- Colorado
- Federal
- Local
- State
- Projects
- Reuse
- Groundwater
- Local Imports
- Environmental

MAF = million acre-feet

North Coast
- 103%
- 16.4 MAF

North Lahontan
- 107%
- 0.0 MAF

Sacramento River
- 112%
- 22.3 MAF

San Francisco
- 136%
- 2.8 MAF

San Joaquin River
- 152%
- 8.4 MAF

Tulare Lake
- 131%
- 13.0 MAF

South Lahontan
- 230%
- 0.7 MAF

Central Coast
- 177%
- 1.4 MAF

South Coast
- 213%
- 5.2 MAF

Colorado River
- 258%
- 4.5 MAF
Groundwater Overdraft & Recovery

Kings Basin, Fresno County

Brophy Water District, South Yuba County
Climate Change: Stressing Our Water System

What Has Already Happened?
Looking over the past century, the following changes are evident:

- California’s temperature has risen one degree Fahrenheit, mostly at night and during the winter, with higher elevations experiencing the greatest increase.
- Average early spring snowpack in the Sierra Nevada has decreased by about 10 percent, a reduction of 1.5 million acre-feet per year. (One acre-foot of water is enough for one to two families for one year.) Seasonal snowpack of the Sierra Nevada is California’s largest surface water storage.
- Sea level along California’s coast has risen 7 inches.
- Flood peaks in the state’s rivers have increased.
- Climate patterns are more variable.

What More Is Expected?
Looking forward to year 2050 and the end of the century, more changes can be expected:

- California’s mean temperature may rise 3.5 degrees to 5.0 degrees Fahrenheit by 2050 and 3.5 to 11 degrees by the end of the century.
- Sierra Nevada snowpack may decrease by 25 to 40 percent by mid-century, a storage volume about 3.8 million acre-feet to 6 million acre-feet, from a little less to a little more than the capacity of California’s largest constructed reservoir.
- Average annual precipitation may show little change, but more intense wet and dry periods can be expected — more floods and more droughts.
- Flood peaks will become higher and more intense and annual spring snowpack will become less.
- Studies show a possible sea level rise of 4 to 16 inches by mid-century and 7 to 55 inches by the end of the century, with the potential for higher rises.
- Higher sea levels will increase salinity in the Delta.

American River Runoff Annual Maximum 3-Day Flow
The five highest floods of record on the American River have occurred since 1950.

Historical and Projected Sea Level at Golden Gate
The chart shows the historical and projected sea level changes at Golden Gate.

Read more on climate change in Volume 1, Chapter 5: Managing for Uncertainty and Chapter 6: Integrated Data and Analysis. Find technical and support articles in Volume 4 Reference Guide.
Average Annual Snowmelt Projections

<table>
<thead>
<tr>
<th>Avg. Annual Snowmelt (in.)</th>
<th>Base</th>
<th>+1°C (+1.8°F)</th>
<th>+2°C (+3.6°F)</th>
<th>+3°C (+5.4°F)</th>
<th>+4°C (+7.2°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Projected Decrease in CA Snowmelt

Historical Average (1961–1990)

- 100% remaining

2070–2099

- Lower Warming Range
 - Drier Climate
 - 40% remaining

- Medium Warming Range
 - Drier Climate
 - 20% remaining

Legend:

- ~0
- 15
- 30
- 45
Historical & Projected Sea Level at GG

- Higher greenhouse gas emissions: A2 scenarios
- Lower greenhouse gas emissions: B1 scenarios
- 95 percent confidence interval
American River Runoff
Annual Maximum 3-Day Flow

Prior to 1950, no events greater than 100,000 cfs
After 1950, five events greater than 100,000 cfs

1956 - Folsom Dam completed

Data from U.S. Army Corps of Engineers, Sacramento District
Climate Change: Stressing Our Water System

What are the Expected Impacts from These Changes?
Climate change is already having a profound effect on California’s water resources as evidenced by changes in snowpack, river flows, and sea levels. Scientific studies show these changes will increase stress on the water system in the future. Because some level of climate change is inevitable, the water system must be adaptable to change.

The impacts of these changes will gradually increase during this century and beyond. California needs to plan for water system modifications that adapt to the following impacts of climate change:

Water Supply
- Changes in river flow impacts water supply, water quality, benefits, and recreation activities.

Ecosystem
- Ponds, important contributors to water supply and quality, will be more susceptible to pests, diseases, changes in species composition, and fire.
- Lower streamflows will lead to more concentrated urban and agricultural runoff, creating more water quality problems.

Coast & Delta
- Increased salinity in the Delta will degrade drinking and agricultural water quality and alter ecosystem conditions.

Water & Power Operations
- California’s hydroelectric power generation may be less reliable; at the same time, higher air temperatures may increase energy consumption through increased use of air conditioning.

Flooding & Drought
- Increased flooding potentially causes more damage to levee systems.
- Higher temperatures and changes in precipitation will lead to droughts.

Sea level rise threatens coastal communities and infrastructure, in particular, the water system in the Sacramento–San Joaquin Delta where the existing Delta levees were not designed to withstand these higher water levels.

Integrated Water Management
- Water supply reliability will be compromised.
- Warmer temperatures will affect water demands.

California Water Plan Update 2009 | Highlights

Integrated Water Management
Questions & Comments
Update 2009 builds on the framework and resource management strategies outlined by California Water Plan Update 2005 promoting two major initiatives:

- **Integrated regional water management** enables regions to implement strategies appropriate for their own needs and helps them become more self-sufficient.
- **Improved statewide water management systems** provides for upgrades to the large physical facilities, such as the State Water Project, and statewide management programs essential to the California economy.

To minimize the impacts of water management on California’s natural environment and make sure that the state continues to have the water supplies it needs, the two initiatives are supported by three foundational actions:

- **Use water efficiently** to get maximum utility from existing supplies.
- **Protect water quality** to safeguard public and environmental health and secure the state’s water supplies for their intended purposes.
- **Expand environmental stewardship** as part of water management responsibilities.

Sustainability

A system that is sustainable meets today’s needs without compromising the ability of future generations to meet their own needs. A sustainable system generally provides for the economy, the ecosystem, and equity.

Over the past few decades, questions have been raised about how sustainable our ecosystems and water, land, and other resources are, given current management practices and expected future changes. California’s water resources are finite and now require managing for sustainability—management that may be different than what has been practiced during the first 150 years of the state’s history.

To achieve sustainability, resource managers and planners must transition from the past model that places value primarily on water supply yield to a model that values the sustainability of the system.
Desired future for California water
California has healthy watersheds and integrated, reliable and secure water resources and management systems that:
- enhance public health, safety, and quality of life in all its communities;
- sustain economic growth, business viability, and agricultural productivity; and
- protect and restore California’s unique biological diversity, ecological values, and cultural heritage.

Desired outcomes over the planning horizon 2050
1. California has water supplies that are adequate, reliable, secure, affordable, sustainable, and of suitable quality for beneficial uses to protect, preserve, and enhance watersheds, communities, and environmental and agricultural resources.
2. State government supports integrated water resources planning and management through leadership, oversight, and public funding.
3. Regional and interregional partnerships play a pivotal role in California water resources planning, water management for sustainable water use and resources, and increasing regional self-sufficiency.
4. Water resources and land use planners make informed and collaborative decisions and implement integrated actions to increase water supply reliability, use water more efficiently, protect water quality, improve flood protection, promote environmental stewardship, and ensure environmental justice in light of drivers of change and catastrophic events.
5. California is prepared for climate uncertainty by developing adaptation strategies, investing in a diverse set of actions that reduce the risk and consequences posed by climate change, and that increase the sustainability of water and flood management systems and the ecosystems they depend on.
6. Integrated flood management, as a part of integrated water management increases flood protection, improves preparedness and emergency response, enhances floodplain ecosystems, and promotes sustainable flood management systems.
7. The benefits and consequences of water decisions and access to state government resources are equitable across all communities.

Purpose of the Water Plan
Updating the California Water Plan provides state, federal, Tribal, regional, and local governments and organizations a continuous strategic planning forum to collaboratively:
- Recommend strategic goals, objectives, and near-term and long-term actions that would conserve, manage, develop, and sustain California’s watersheds, water resources, and management systems;
- Prepare response plans for floods, droughts, and catastrophic events that would disrupt water resources and management systems, the environment, property, and the health, welfare and livelihood of the people of California; and
- Evaluate current and future watershed and water conditions, challenges, and opportunities.

Core values and philosophies / How to make decisions
1. Use a broad, stakeholder-based, long-view perspective for water management.
2. Promote management for sustainable resources on a watershed basis.
3. Increase regional drought and flood preparedness.
4. Increase regional self-sufficiency.
5. Promote regional coordination and collaboration among local governments and agencies, public and private organizations, and Tribal governments and Tribal communities.
6. Determine values for economic, environmental, and social benefits, costs, and tradeoffs to base investment decisions on sustainability indicators.
7. Incorporate future variability, uncertainties, and risk in the decision-making process.
8. Apply California’s water rights laws, including the longstanding constitutional principles of reasonable use and public trust, as the foundation for public policy-making, planning, and management decisions on California water resources.
9. Promote environmental justice - the fair treatment of people of all races, cultures, and incomes.
10. Use science, best data, and local and indigenous peoples’ knowledge in a transparent and documented process.
Implementation Plan: An Urgent Roadmap

Update 2009's implementation plan has 13 objectives that will help us achieve the Water Plan goals. Meeting these objectives, and planning and investing in their 116 related actions, will help California deal with a changing climate and other uncertainties and risks, and provide more adaptive and resilient ecosystems and more sustainable water and flood systems.

1. Expand Integrated Regional Water Management
 Promote, improve, and expand integrated regional water management to create and build on partnerships that are essential for California's water resources planning, sustainable water use, and floodplain management, and increasing regional self-sufficiency.

2. Use and Reuse Water More Efficiently
 Use water more efficiently with significantly greater water conservation, recycling, and reuse to help meet future water demands and adapt to climate change.

3. Expand Conjunctive Management of Multiple Supplies
 Advance and expand conjunctive management of multiple water supply sources with surface water and groundwater storage to prepare for future droughts, floods, and climate change.

4. Protect Surface Water and Groundwater Quality
 Protect and restore surface water and groundwater quality to safeguard public and environmental health and secure California's water supplies for their beneficial uses.

5. Expand Environmental Stewardship
 Practice, promote, improve, and expand environmental stewardship to protect and enhance the environment by improving watersheds, floodplains, and mainstem functions and to sustain water and flood management systems.

6. Practice Integrated Flood Management
 Promote and practice integrated flood management to provide multiple benefits including better emergency preparedness and response, higher flood protection, more sustainable flood and water management systems, and enhanced floodplain ecosystems.

7. Manage a Sustainable California Delta
 Promote and practice management for a sustainable Delta by setting as co-equal goals a healthy Delta ecosystem and a reliable water supply for California and by recognizing the Delta as a unique and valued community and ecosystem.

8. Prepare Prevention, Response, and Recovery Plans
 Prepare prevention, response, and recovery plans for floods, droughts, and catastrophic events to help residents and communities, particularly disadvantaged communities, make decisions that reduce the consequences and recovery time of these events when they occur.

9. Reduce Energy Consumption of Water Systems and Uses
 Reduce the energy consumption of water and wastewater management systems and uses to mitigate greenhouse gas emissions. (water-related strategies in AB 13 Scoping Plan)

10. Improve Data & Analysis for Decision-making
 Improve and expand monitoring, data management, and analysis to support decision-making in light of uncertainties that support integrated regional water management and flood and water resources management systems.

11. Invest in New Water Technology
 Identify and fund applied research on new water technology to help carry out water programs and better manage water systems.

12. Improve Tribal Water and Natural Resources
 Develop Tribal consultation, collaboration, and access to funding for water programs and projects to better sustain Tribal water and natural resources.

13. Ensure Equitable Distribution of Benefits
 Provide safe drinking water and wastewater treatment to all California communities. Increase the participation of small and disadvantaged communities in state government processes and programs to achieve fair and equitable distribution of benefits; to consider mitigation of impacts from the implementation of state government programs and policies, and to ensure that these programs and policies address the most critical public health threats in disadvantaged communities.

Status of Elements in this Strategic Plan is for ease of reference and does not represent priority.
Water Scenarios 2050: Range of Considerations

What will California look like in 2050? Will the population growth keep pace with recent trends? Will the pattern of climate change continue? Will the protection of water quality and endangered species be driven mostly by lawsuits, creating a patchwork of regulations? We have no way of predicting the future, but we can construct some plausible scenarios. Future scenarios can be used to help us better understand the implications of future conditions on water management. Update 2009 made significant improvements to the scenarios by considering the potential effect of long-term climate change on future water demands. (See more on climate change at Highlights pages 8 through 11.)

The California Water Plan acknowledges that planning for the future is uncertain and that change will continue to occur. It is not possible to know for certain how population, water demand patterns, environmental conditions, the climate, and many other factors that affect water use and supply may change by 2050. To anticipate change, our approach to water management and planning for the future needs to incorporate consideration of uncertainty, risk, and sustainability.

Update 2009 has three future scenarios for year 2050 in which the water community would need to respond expeditiously by implementing a mix of resource management strategies (see more about resource management strategies on Highlights pages 18 and 19 and examples of strategies by regions on Highlights pages 20 and 21). The title of each scenario—Current Trends, Strategic Growth, and Expansive Growth—tells us something about how different factors, like population or irrigated farmland, are assumed to change over time. These are factors over which the water community has little control, yet many scenarios affect future water demand. Water Plan Update 2009 quantifies several factors that together provide a description of future water demand for the urban, agricultural, and environmental sectors.

Water Demand Changes and Climate Change Variability

The chart under each scenario represents future water demand change (the difference between average historical water demand in 1998-2005 and projected future demand in the year 2050). The change could be either an increase or decrease in water use compared to baseline (i.e., baseline in water use).

Climate change adds another dimension of variability to element changes. In figure at right, historical period shows actual element change, climate change shows potential (i.e., without climate change, the hatched area represents 1 of 22 climate scenarios). This variability is represented on the water demand change graph by the hatched area.
3 Future Scenarios: Key Factors of Uncertainty

Factors of Uncertainty

Population
- **Current Trends**: 60 million
- **Strategic Growth**: 45 million
- **Expansive Growth**: 70 million

Land Use
- **Current Trends**: Continued development
- **Strategic Growth**: Compact development
- **Expansive Growth**: Sprawling development

Irrigated Crop Area
- **Current Trends**: 8.5 million acres
- **Strategic Growth**: 9 million acres
- **Expansive Growth**: 8.2 million acres

Environmental Water
- **Current Trends**: 1.0 additional MAF
- **Strategic Growth**: 1.5 additional MAF
- **Expansive Growth**: 0.8 additional MAF

Background Water Conservation
- **Current Trends**: 10% increase
- **Strategic Growth**: 15% increase
- **Expansive Growth**: 5% increase

Recent trends are assumed to continue into the future. Initiated mostly by lawsuits, the state faces lawsuits on a regular basis: from flood damages to water quality and endangered species protections. Regulations are not coordinated or comprehensive, creating uncertainty for planners and water managers.

Private, public, and governmental institutions form alliances to provide for efficient planning and development that is less resource-intensive than current conditions. State government implements comprehensive and coordinated regulatory programs to improve water quality, protect fish and wildlife, and protect communities from flooding.

Future conditions are more resource-intensive than existing conditions. Protection of water quality and endangered species is driven mostly by lawsuits. State government has responded on a case-by-case basis, creating a patchwork of regulations and uncertainty for planners and water managers.
Legend: Water Demand Changes & Climate Change Variability

Water demand change:
- range with climate change
- without climate change

0 baseline = Average historical demand (1998-2005)
2050 Water Demand Changes by Sector & Scenario

2050 Water Demand Changes by Scenario

Combined Water Demand Change by Scenario

Amount of Change (million acre-feet per year)

Urban
Ag
Environmental

Urban
Ag
Environmental

Urban
Ag
Environmental

Current Trends
Strategic Growth
Expansive Growth

Total average historical demand (1998-2005)

78.8 MAF
Water Scenarios 2050: Range of Considerations (2)

The three baseline scenarios for 2050 (described on pages 14 & 15) would play out differently in various hydrologic regions. This regional variability is illustrated here, showing the continued urban, agricultural, and environmental water demand changes for each scenario in each region.

The way scenario water demands change in each region reflects a number of factors—the relative amount of water demand in the region for cities, farms, and environment, how the scenario factors (population, irrigated crop acreage, and water dedicated to the environment) increase or decrease in each area of the state, and how temperature and precipitation changed in the 12 climate change scenarios that were examined.

Hydrologic regions expecting higher population growth under the Current Trends and Expansive Growth scenarios, like the South Coast and the Sacramento River, show higher changes in water demands. Population growth also tends to drive urbanization of agricultural lands, reducing irrigated crop acreage.

Precipitation and temperature heavily influence water demand for outdoor landscaping and irrigated agriculture. Less precipitation and rising during the growing season increases the need to apply more irrigation water. Warmer temperatures increase crop evapotranspiration, which increases water demand.

Water demand stays the same or decreases in the San Joaquin River and Tulare Lake regions when climate change was not considered because of less irrigated crop area from urbanization and more background water conservation. Water demand changes in Central Valley agricultural areas were most sensitive to the warmer and drier climate change scenarios. This is particularly evident in the Sacramento River Region where the variation in potential change in water demand is quite large across the 12 climate change scenarios.

Each future scenario describes a different baseline for 2050, to which the water community would need to respond by implementing a mix of the resource management strategies shown on pages 18 and 19. No single management strategy is sufficient to meet future regional demands with such variation possible from region to region and sector to sector. California needs to ensure that each region can tailor responses to local conditions. We can achieve this most effectively by implementing integrated regional water management supported by strong statewide water management systems.
Regional Water Demand Changes by Scenario

LEGEND

- Water demand change:
 - Current Trend
 - Strategic Growth
 - Expansive Growth
 - Average historical demand (1998-2005)

- Range with climate change
- Without climate change

North Coast
North Lahontan
San Francisco
San Joaquin River
Central Coast
Tulare
South Lahontan
South Coast
Colorado River
Resource Mgmt Strategies: Range of Choices

A Range of Choices

As California changes, local agencies and governments continue to use different methods for managing water resources. Growing populations, changing regulations, and evolving public attitudes and values are a few conditions that are influencing water decisions. No single response package will work for all areas of California. Facing an uncertain future, regions need to invest in an appropriate mix of strategies based on integrated regional water management plans that are diversified, satisfy regional and state needs, meet multiple resource objectives, include public input, address environmental justice, mitigate impacts, protect public trust assets, and are affordable.

Improve Water Quality
Improved water quality can directly improve the health of Californians and our ecosystem.

Practice Resource Stewardship
We must protect other resources as we make water supplies available for other beneficial uses.

Improve Flood Management

1. Additional information is in Appendix 3.
2. Water is let into account for water reuse among agricultural water users.
3. Potential cost reduction of net water benefit which is not the true cost of the project.
Reduce Water Demand

Water conservation has become a viable long-term supply option because it saves considerable capital and operating costs for utilities and consumers, avoids environmental degradation, and creates multiple benefits.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MAF/year</th>
<th>Potential Strategy Benefits</th>
<th>Accumulated Cost by 2030 $ Billions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Water Use Efficiency</td>
<td>0.1 - 0.6</td>
<td>!</td>
<td>3.0 - 4.0</td>
</tr>
<tr>
<td>Urban Water Use Efficiency</td>
<td>1.2 - 3.1</td>
<td>!</td>
<td>2.5 - 6.0</td>
</tr>
</tbody>
</table>

Improve Operational Efficiency & Transfers

California’s water system responds to our need to move water from where it occurs to where it will be used.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MAF/year</th>
<th>Potential Strategy Benefits</th>
<th>Accumulated Cost by 2030 $ Billions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conveyance—Delta</td>
<td>0.1 - 0.6</td>
<td>!</td>
<td>1.2 - 17.2</td>
</tr>
<tr>
<td>Conveyance—Regional/Local</td>
<td></td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>System Reoperation</td>
<td></td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>Water Transfers</td>
<td></td>
<td>!</td>
<td></td>
</tr>
</tbody>
</table>

Increase Water Supply

California’s communities are finding innovative ways to generate new supplies.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MAF/year</th>
<th>Potential Strategy Benefits</th>
<th>Accumulated Cost by 2030 $ Billions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunctive Management & Groundwater Storage</td>
<td>0.5 - 2.0</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>Desalination – Brackish & Seawater</td>
<td>0.3 - 0.4</td>
<td>!</td>
<td>0.9 - 2.9</td>
</tr>
<tr>
<td>Precipitation Enhancement</td>
<td>0.3 - 0.6</td>
<td>!</td>
<td>0.2</td>
</tr>
<tr>
<td>Recycled Municipal Water</td>
<td>0.9 - 1.4</td>
<td>!</td>
<td>6.0 - 9.0</td>
</tr>
<tr>
<td>Surface Storage—CALFED</td>
<td>0.1 - 1.0</td>
<td>!</td>
<td>0.7 - 9.2</td>
</tr>
<tr>
<td>Surface Storage—Regional/Local (under development)</td>
<td></td>
<td>!</td>
<td></td>
</tr>
</tbody>
</table>

1. Additional information is found in Volume 2.
2. Value is Net Water to account for water reuse among agricultural water users.
3. Reflects cost allocation of annual water benefit which is not the total cost of the project.
Improve Water Quality

Improved water quality can directly improve the health of Californians and our ecosystem.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MAF/year</th>
<th>Potential Strategy Benefits</th>
<th>Accumulated Cost by 2030 (in billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking Water Treatment and Distribution</td>
<td></td>
<td></td>
<td>1.4/year</td>
</tr>
<tr>
<td>Groundwater/Aquifer Remediation</td>
<td></td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>Matching Quality to Use</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Pollution Prevention</td>
<td></td>
<td></td>
<td>21.0</td>
</tr>
<tr>
<td>Salt and Salinity Management</td>
<td></td>
<td></td>
<td>>10.0</td>
</tr>
<tr>
<td>Urban Runoff Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practice Resource Stewardship

We must protect other resources as we make water supplies available for other beneficial uses.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MAF/year</th>
<th>Potential Strategy Benefits</th>
<th>Accumulated Cost by 2030 (in billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Lands Stewardship</td>
<td></td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>Economic Incentives (Loans, Grants, Water Pricing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecosystem Restoration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest Management</td>
<td>0.1-0.4</td>
<td></td>
<td>0.3 - 0.8</td>
</tr>
<tr>
<td>Land Use Planning and Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recharge Area Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-dependent Recreation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watershed Management</td>
<td></td>
<td></td>
<td>0.5 - 3.6</td>
</tr>
</tbody>
</table>

Improve Flood Management

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MAF/year</th>
<th>Potential Strategy Benefits</th>
<th>Accumulated Cost by 2030 (in billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Risk Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regional Strategies: Multiple Responses & Benefits

Regional partnerships in many parts of the state are successfully employing a mix of resource management strategies. Experience is showing that these regional efforts can better resolve regional needs, especially when paired with statewide water management systems.

With integrated regional water management, regions have been able to take advantage of opportunities that are not always available to individual water suppliers. Reduce dependence on impaired water, and make better use of local supplies, enhance use of groundwater with greater ability to limit groundwater overdraft, increase supply reliability and security, and improve water quality. More is being done to meet water demands with water conservation, recharges of Declines, water recycling, groundwater storage and management, transfer programs, and, in limited cases, regional or local surface storage reservoirs. Overall, this increased focus on integrated regional water management solves water management problems more efficiently, considers other resource issues, and enjoys broader public support.

Integrated Regional Water Management (IRWM) provides a critical framework for actions to address the uncertainties presented by climate change as well as other risks to California’s water future. The extent to which regions have carried these out has been driven by considerations like economics, environment, engineering, and institutional feasibility. For more information on the IRWM Program, go to Web site: http://www.water.ca.gov/irwm/.

North Coast
- Auralo Creek Restoration Project
- Squirrel Creek Water System Replacement
- Sport Fish Hatchery

San Francisco Bay
- Mosquito Groundwater Demonstration Plant
- Water Supply Hero Campaign

South Coast
- Colleville Regional Saltwater Management Project
- Arroyo Disposal
- Los Angeles County’s Groundwater Restoration
- Joint Water Pollution Control Plant Marshland Enhancement (Brady Marshland)

Santa Ana
- Arlington Desalter
- Orange County Groundwater Replenishment System
- Solar Array at NRNP Water Treatment Plant

San Diego
- Tri-County Fishing Area, Coordinating Committee
- El Monte Valley Groundwater Recharge and River Restoration Project
- Carlsbad Desalination Project Local Conveyance
- Rancho California Water District Water Reclamation Project
- Santa Margarita Conjunctive Use Project

Colorado River
- Coachella Valley Regional Water Management Group project includes water conservation, recycling, evaporation, and water quality improvements
- Salton Sea restoration partnerships
- Coachella Valley Project
- All-American Canal Project

Sacramento River
- Red River Valley Restoration - Upper Feather River Watershed
- The Bear River Project Reducing Legacy Mercury Contamination

San Joaquin River
- Yosemite Spring Park Utility Company Improvements

Central Coast
- Groundwater Recharge Enhancement
- City of Watsonville Recycled Water Facility and Pajaro Valley Water Management Agency Coastal Distribution System
- Salinas Valley Water Project
- Santa Maria Wastewater Treatment Plant Expansion
- Los Ojos Wastewater Project

North & South Lahontan
- Inyo-Mono Integrated Regional Water Management Project
- Upper Amargosa Creek Recharge and Nature Park Project
- Antelope Valley Regional Recycled Water Project

Tulare Lake
- Southern CA RWM Effort
- Atta Irrigation District Transfer Pond recharge and banking project
Conclusion & Recommendations

Conclusion

With new urgency, this Water Plan follows the Update 2005 roadmap to sustainable water uses and reliable water supplies—to use water efficiently, improve water quality, and expand environmental stewardship. Update 2009 marks a new chapter in the way California must manage its water resources. It is the state’s blueprint for integrated water management and sustainability—statewide and regional.

We must adapt and evolve California’s water systems more quickly and effectively to keep pace with ever changing conditions now and in the future. Population is growing while available water supplies are static and even decreasing. Climate change, as evidenced by changes in snowpack, river flows, and sea levels, is profoundly impacting our water resources. The Delta and other watersheds and ecosystems continue to decline. The state’s current water and flood management systems are increasingly challenged by legal moratoria and regulatory protections, with economic and societal consequences. The entire system—water and flood management, watersheds, and ecosystems—has lost its resilience and is changing in undesirable ways.

So where do we start? — From all directions! — It is imperative that decisions about California water account for and reduce uncertainty and risk, and that investments made in water management systems, flood protection systems, and ecosystems more sustainable. New to this Water Plan is an integration of water resource and flood management. This approach will be challenging, but it can yield significant public safety benefits, protect water supplies, and improve the environment. A prime and urgent example is developing and then implementing a durable Delta Plan for its sustainable management.

Update 2009 may truly be called California’s Water Plan because it embodies countless deliberations between and among the brightest minds in government and private agencies, tribes, cities, farms, industry, and environmental organizations. As a result, Update 2009:

- Provides an investment guide for state, federal, tribal, and regional strategies to reduce water demand, improve operation efficiency, increase water supply, improve water quality, advance environmental stewardship, and improve flood management;
- Integrates objectives and strategies from numerous state agencies and initiatives and offers more than 90 state- and local agencies and regions a chance to develop unique and diverse water portfolio solutions for managing an uncertain future; and
- Outlines new analytical methods and tools to help plan for future effects of climate change, population growth and development patterns, economic change, and other factors outside the state’s community control.

We must invest—significantly and uninterupted—at California’s aging and increasingly inadequate water and flood systems. Californians have recognized the need to invest in our water and flood systems, but funds from bond-to-bond are neither sufficient nor sustainable. California needs a new set of continuous and sustainable sources of revenue to invest in statewide and regional integrated water management and to build resilience back into the state’s water and flood management systems, as well as into the watersheds, groundwater basins, and ecosystems that support them.

Recommendations

California Water Plan Update 2009 identifies the most pressing water management issues and challenges faced by the state and regions, and available opportunities and assets. Through the Water Plan process, we have developed recommendations in the form of policies, strategies, and approaches that will help reduce and remove impediments, and leverage resources and opportunities to help implement the Water Plan actions and achieve its goals and objectives through 2050.

These recommendations are summarized here and described in Volume 1 Chapter 2 Improving to Act. They are directed at decision-makers and water users throughout California (referred to as Californians) and at the executive and legislative branches of state government, the Department of Water Resources, and other state agencies (referred to as state government).

1. California should implement the Water Plan’s actions as the key to achieving its goals and objectives.
2. California needs a water finance plan for stable and continuous funding from an array of revenue sources for integrated water management on a statewide and regional basis. The finance plan should recognize the critical role of public-private partnerships and for the principle of beneficiary pays, include alternative revenue sources; and guide investment decisions based on sustainability indicators.
3. California should manage its water resources with ecosystem health and water supply reliability and quality as equal goals, with full consideration of public trust uses whenever feasible.
4. State government should effectively lead, assist, and oversee California’s water resources and flood planning and management activities that regions cannot accomplish on their own.
5. State and federal government should lead and support planning, monitoring, and scientific research to help California adapt and mitigate for climate change impacts.
6. California should improve the coordination of land use policies and practices, economic development decisions, and water, flood, and natural resource planning and management.
7. California should renovate and improve its existing water, wastewater, and flood infrastructure.
8. California should articulate and update as needed the roles, authorities, rights, and responsibilities of federal, tribal, state, and local governments and agencies responsible for water resource and flood planning and management.
9. California should increase public understanding and awareness of where our water comes from, as well as the value and importance of water, water quality, and water conservation to people, ecosystems, and California’s economy.

The recommendations are as varied as the constraints they are intended to change—a technical, legal, knowledge, information, skills/capacity, resources, funding, schedule, and public awareness.

California needs to act on these recommendations to improve drought contingency planning, flood management improvements, and climate change adaptations. We need to invest in the water and flood bond funds that the public has approved to implement these recommendations and realize this Water Plan.
Navigating the Volumes & Files on CD

California Water Plan Update 2009 presents the latest statewide strategic plan for water management – a roadmap to year 2030. Use this reader’s guide to navigate the many volumes that describe California’s diverse water conditions and statewide and regional integrated water management.

The Roadmap

Where are we and how should California proceed?

Volume 1: The Strategic Plan

California Resources

Critical Challenges

- Climate change, population growth, dry years, floods, vulnerable ecosystems and Delta, water quality, aging infrastructure (revenue), catastrophic events, data gathering, funding, disadvantaged communities

- Managing our Resources (Sustainability)

- Water use efficiency, water quality, stewardship

- Reliability

- SWM, water/food systems

- Record of Risk and Uncertainty

- Companion State Plans

- Integrated Data and Analysis

- Statewide Objectives and Actions

Volume 2: Resource Management Strategies

A Range of Choices

- 27 strategies to

- Reduce water demand

- Increase water supply

- Improve water quality

- Practice resource stewardship

- Improve flood management

Volume 3: Regional Reports

19 regions and 2 areas of interest

- Setting

- Water conditions

- Relations with other regions

- Water and flood management

- Water portfolio

- Looking to the future

- Scenario results

Volume 4: Reference Guide

An encyclopedia guide

- Background on California Water Resources

- Water Resources Analysis

- Emerging issues

Volume 5: Technical Guide

Documentation

- Assumptions

- Data

- Analytical tools and methods

The California Water Plan provides a framework for resource managers, legislators, Tribes, other decision-makers, and the public to consider options and make decisions regarding California’s water future. Our goal is that this document meet Water Code requirements, receive broad support among those participating in California’s water planning, and be a useful document. With its partners, DWR completed the final Update 2009 volumes and Highlights in December 2009.

The first four volumes of the update and the highlights document are contained on the CD attached below. All five volumes of the update and related materials are also available online at www.waterplan.water.ca.gov.

Volume 1: The Strategic Plan

Volume 2: Resource Management Strategies

Volume 3: Regional Reports

Volume 4: Reference Guide

Volume 5: Technical Guide

For printed copies of the Highlights, Volume 1, 2, or 3, call 1-916-653-1097. If you need this publication in alternate form, contact the Public Affairs Office at 1-800-272-8669.

ENVELOPE FOR CD
Questions & Comments